Saturday, March 03, 2007
Ethnomathematics
We have recently been discussing ethnomathematics in the context of Weston’s global awareness emphasis. Here are some thoughts on this subject:
It’s worth studying number systems other than our own familiar Hindu-Arabic one. Years ago I developed quite a number of activities on different number systems — such as Egyptian, Babylonian, Greek, Chinese, Maya, etc. — including a computer program that probably doesn’t work any more since it was developed for Mac OS 9. I’ve used these activities with a wide range of students from grades 4–11, and they seem to work well. The mathematical ideas that pervade these activities include bases; numbers, numerals, and names of numbers; the concept of zero; alternative algorithms; and unit fractions. These topics are worth studying for many of the same reasons that foreign languages are worth studying. In particular, they give perspective on our own system, which is often so familiar to us that it becomes transparent.
On the other hand, I believe that we are correct in thinking that math is much more nearly universal than it is culturally specific. (The role of proof is the only really deep difference I can think of.) The tiny number of usually superficial differences are important for mathematical reasons, not for cultural reasons. It’s worth knowing that there were parallel discoveries of the Pythagorean Theorem in India, Chinese, and Greece; we don’t have one theorem in one country and a different one in another. The same goes for Pascal’s Triangle. And negative numbers. It’s worth knowing that there are different algorithms for multiplying, but the more important lesson is that all cultures above a certain primitive level of technology do multiply. (I know, it’s not PC to say “primitive”.) Human similarities are more important than human differences. (Likewise, language differences are illuminating, but human languages are more alike than different.) In both math and language, Plato was right. Ethnomathematics is a rich field, but it’s going to teach us much more about appreciating similarities than about appreciating differences.
On the third hand, the real problem with taking a Eurocentric view of math is that it limits our understanding of the contributions of the rest of the world. Years ago I referred to the wall of mathematicians at the Museum of Science as the “wall of dead white European male mathematicians”; it has gotten somewhat better since. I can recommend several excellent resources on multicultural approaches to math, such as the following:
It’s worth studying number systems other than our own familiar Hindu-Arabic one. Years ago I developed quite a number of activities on different number systems — such as Egyptian, Babylonian, Greek, Chinese, Maya, etc. — including a computer program that probably doesn’t work any more since it was developed for Mac OS 9. I’ve used these activities with a wide range of students from grades 4–11, and they seem to work well. The mathematical ideas that pervade these activities include bases; numbers, numerals, and names of numbers; the concept of zero; alternative algorithms; and unit fractions. These topics are worth studying for many of the same reasons that foreign languages are worth studying. In particular, they give perspective on our own system, which is often so familiar to us that it becomes transparent.
On the other hand, I believe that we are correct in thinking that math is much more nearly universal than it is culturally specific. (The role of proof is the only really deep difference I can think of.) The tiny number of usually superficial differences are important for mathematical reasons, not for cultural reasons. It’s worth knowing that there were parallel discoveries of the Pythagorean Theorem in India, Chinese, and Greece; we don’t have one theorem in one country and a different one in another. The same goes for Pascal’s Triangle. And negative numbers. It’s worth knowing that there are different algorithms for multiplying, but the more important lesson is that all cultures above a certain primitive level of technology do multiply. (I know, it’s not PC to say “primitive”.) Human similarities are more important than human differences. (Likewise, language differences are illuminating, but human languages are more alike than different.) In both math and language, Plato was right. Ethnomathematics is a rich field, but it’s going to teach us much more about appreciating similarities than about appreciating differences.
On the third hand, the real problem with taking a Eurocentric view of math is that it limits our understanding of the contributions of the rest of the world. Years ago I referred to the wall of mathematicians at the Museum of Science as the “wall of dead white European male mathematicians”; it has gotten somewhat better since. I can recommend several excellent resources on multicultural approaches to math, such as the following:
- The Crest of the Peacock, by George Gheverghese Joseph
- The Ethnomathematics Digital Library
- Ethnomathematics: an absolutely essential key for Mathematics Education
Labels: math, teaching and learning, travel, Weston
ARCHIVES
- May 2005
- June 2005
- July 2005
- August 2005
- September 2005
- October 2005
- November 2005
- December 2005
- January 2006
- February 2006
- March 2006
- April 2006
- May 2006
- August 2006
- September 2006
- November 2006
- December 2006
- January 2007
- February 2007
- March 2007
- April 2007
- May 2007
- December 2007
- January 2008
- February 2008
- March 2008
- April 2008
- May 2008
- July 2008
- November 2008
- December 2008
- January 2009