Tuesday, November 21, 2006
Using math in the so-called real world?
So what do we say when we hear that all-too-familar question, “When am I ever going to use this in the real world?” [Grammatical footnote: logically speaking, that sentence should have two question marks at the end, one before and one after the closing quotation mark. But the official rules of American punctuation prevent me from doing that. Why? I suppose it’s because ?”? looks so ugly.]
Anyway, back to our question. My take on it is that the student who asks it rarely wants to listen to an answer. Usually it’s an indirect way of saying, “This is boring/confusing/hard to understand. Why do I have to learn it?” In other words, the subtext is a plea for more meaningful math (or whatever the subject is). But our tendency, as teachers, is to take the question seriously — as we should — and therefore to try to answer the question that was asked — rather than the question that was meant. We want our answers to be honest and to be perceived as responsive, but it’s hard to do both. So we say something like this: “You will need logarithms in surprisingly many situations in the future, such as chemistry, calculus, statistics, business courses, and even college psychology courses.” That’s somewhat honest: it’s the truth, but it’s not the whole truth. And it’s somewhat responsive: it does take the question seriously, but it provides an unsatisfactory answer to it, especially since the implication of the question is that school is not part of the real world.
Why is the answer unsatisfactory? It’s mostly because it merely postpones the question. Telling a student that she will “use” a concept in a later course only encourages her to ask the same question (quite appropriately) when taking that course. A similarly unsatisfactory answer, one that most teachers are understandably reluctant to give, is that logarithms will appear on the MCAS and the SAT II. Motivating a topic by citing its possible appearance (and it is only possible) on a standardized test satisfies no one and definitely does not answer the question. The reality is that future courses and standardized tests do constrain what we teach, but that’s not really what the student is asking.
So, what’s the honest answer? To my mind, the honest but brutal answer is to refuse to accept the terms of the question. The honest answer has two parts to it:
Anyway, back to our question. My take on it is that the student who asks it rarely wants to listen to an answer. Usually it’s an indirect way of saying, “This is boring/confusing/hard to understand. Why do I have to learn it?” In other words, the subtext is a plea for more meaningful math (or whatever the subject is). But our tendency, as teachers, is to take the question seriously — as we should — and therefore to try to answer the question that was asked — rather than the question that was meant. We want our answers to be honest and to be perceived as responsive, but it’s hard to do both. So we say something like this: “You will need logarithms in surprisingly many situations in the future, such as chemistry, calculus, statistics, business courses, and even college psychology courses.” That’s somewhat honest: it’s the truth, but it’s not the whole truth. And it’s somewhat responsive: it does take the question seriously, but it provides an unsatisfactory answer to it, especially since the implication of the question is that school is not part of the real world.
Why is the answer unsatisfactory? It’s mostly because it merely postpones the question. Telling a student that she will “use” a concept in a later course only encourages her to ask the same question (quite appropriately) when taking that course. A similarly unsatisfactory answer, one that most teachers are understandably reluctant to give, is that logarithms will appear on the MCAS and the SAT II. Motivating a topic by citing its possible appearance (and it is only possible) on a standardized test satisfies no one and definitely does not answer the question. The reality is that future courses and standardized tests do constrain what we teach, but that’s not really what the student is asking.
So, what’s the honest answer? To my mind, the honest but brutal answer is to refuse to accept the terms of the question. The honest answer has two parts to it:
- I don’t know, and you don’t know, exactly what you’re going to be doing in your future life. So don’t reject a topic just because it’s not included in your current plans. Maybe you’ll become a pharmacist and will need to understand reports of pharmaceutical tests... I can’t say whether you will use logs, but it’s better to leave the door open than to close it.
- More important, our reason for selecting a topic is not that the content of that specific topic will be useful to you later on. Yes, it might turn out to be useful, but the most important life lessons you learn from studying any worthwhile topic, whether it be logarithms or fractals, polynomials or proofs, are those big, hard-to-test lessons: how to approach a difficult subject, how to reason quantitatively, how to organize knowledge, how to solve problems, how to explain your solutions, how to present your analysis, and so forth.
Labels: math, teaching and learning
ARCHIVES
- May 2005
- June 2005
- July 2005
- August 2005
- September 2005
- October 2005
- November 2005
- December 2005
- January 2006
- February 2006
- March 2006
- April 2006
- May 2006
- August 2006
- September 2006
- November 2006
- December 2006
- January 2007
- February 2007
- March 2007
- April 2007
- May 2007
- December 2007
- January 2008
- February 2008
- March 2008
- April 2008
- May 2008
- July 2008
- November 2008
- December 2008
- January 2009