<body><script type="text/javascript"> function setAttributeOnload(object, attribute, val) { if(window.addEventListener) { window.addEventListener('load', function(){ object[attribute] = val; }, false); } else { window.attachEvent('onload', function(){ object[attribute] = val; }); } } </script> <div id="navbar-iframe-container"></div> <script type="text/javascript" src="https://apis.google.com/js/platform.js"></script> <script type="text/javascript"> gapi.load("gapi.iframes:gapi.iframes.style.bubble", function() { if (gapi.iframes && gapi.iframes.getContext) { gapi.iframes.getContext().openChild({ url: 'https://www.blogger.com/navbar/12969692?origin\x3dhttp://larrydavidson.blogspot.com', where: document.getElementById("navbar-iframe-container"), id: "navbar-iframe" }); } }); </script>

Wednesday, November 09, 2005

Killing five birds with one stone

At a recent Math Department meeting, we discussed the question of whether we should offer more math electives. Currently the only non-AP electives that Weston offers are two one-semester Comp Sci courses, but we’re a small high school and probably wouldn’t get sufficient enrollment for any given additional electives. So here’s my thought:

Suppose we create a new course called Guided Projects in Mathematics or Directed Research in Mathematics or something like that. This would be a loosely structured opportunity for students to pursue work on any math topics of their own choosing. The teacher would be there to advise, to coordinate, to supervise, and to give feedback — but only rarely to provide explicit instruction. The classroom could well contain 16-20 kids working on ten different projects, so each would sign an individualized contract at the beginning of the year. They would have to be proactive and responsible in order to thrive in this environment, since they would be working fairly independently.

This course could kill five birds with one stone, by meeting the mathematical needs of five disparate sets of students:
  1. Those seeking an extra math experience in addition to a regular course. I can easily imagine a dozen different courses that might be valuable and interesting to a few kids, such as Advanced Geometry or Number Theory or Abstract Algebra or Game Theory or Problem Solving or a collection of topics from the For All Practical Purposes book.

  2. Those who have taken AP Comp Sci — or who have taken Intro and don’t want to take AP — and are seeking additional opportunities to broaden and/or deepen their computer programming knowledge.

  3. Those who would otherwise pursue an independent study in math but can’t get much done by meeting only once a cycle.

  4. Those who are on the Math Team and would welcome a loosely structured opportunity to do more practice and learn more math in the process (several other schools offer course credit for Math Team, and this could be a vehicle to do so).

  5. Those who have already taken all our regular courses (we typically have two to four juniors in BC Calculus, our most advanced course).
These sets, of course, are not necessarily disjoint. It would be entirely possible — and even likely — for a given student to mix two or three of these ideas into one year’s worth of math.

To me this sounds exciting and useful. What do you think?

Labels: , ,


ARCHIVES

This page is powered by Blogger. Isn't yours? Made with Macintosh